OpenCV를 활용한 이미지의 유사도 비교에서 먼저 피처 매칭을 살펴봤다. 오늘은 히스토그램 비교를 알아보도록 하자. 히스토그램은 매개변수에 따라 Correlation, Chi-square, Intersection, Bhattacharyya 각각의 결과값을 가질 수 있다. 그래서 중요한 부분이 각각의 결과값을 어떻게 해석하는 것이다. Correlation과 Intersection은 값이 클수록 유사한 것이고, Chi-square와 Bhattacharyya는 값이 작을수록 유사한 것으로 판단한다. Comparing Histogram 먼저 전체 소스를 살펴보면 다음과 같다. 마찬가지로 C로 구현되어 있는 Histogram 소스를 자바로 변환한 것이다. package kr.co.acronym; import j..
OpenCV는 인텔이 개발한 오픈소스 컴퓨터비전 C 라이브러리이다. 실시간 이미지 프로세싱을 위한 라이브러리로 윈도우, 리눅스 등 여러 플랫폼에서 활용할 수 있다. 원래 C 언어로 되어 있지만 최근에는 Java 언어로도 적용할 수 있고, 안드로이드 및 아이폰과 같은 모바일 환경도 지원한다. 다양한 이미지 프로세싱 알고리즘을 지원하기 때문에 처음에는 두 이미지가 동일한지 비교하는 메소드 같은 것이 존재할 줄 알았다. 그러나 두 이미지의 동일성을 OpenCV로 비교하는 것은 생각보다 쉽지 않았다. 히스토그램 비교, 템플릿 매칭, 피처 매칭의 세 가지 방법이 있다고 하는데 각각의 방법으로 구현한 다음 많은 테스트를 통해 실제 어느 정도 값이 나오면 일치한다고 판단할지를 정해야 한다. 이 부분은 다음 번 글에서..