분석을 하면서 "몬테카를로 시뮬레이션"을 한번쯤은 들어봤을 것이다. 몬테카를로는 무작위 값을 활용하여 확률적으로 계산하는 알고리즘을 이야기한다. 이렇게 확률적으로 계산함으로써 원하는 수치의 확률적 분포를 구할 수 있게 된다. 이를 위해 많은 수의 실험을 바탕으로 한 통계를 이용해 확률적 분포를 알게 되므로, 이것을 바로 몬테카를로 시뮬레이션이라고 한다. 몬테카를로 시뮬레이션 개념 몬테카를로는 통계 자료가 많고 입력값의 분포가 고를수록 정밀하게 시뮬레이션 할 수 있다. 그래서 컴퓨터를 이용해 시뮬레이션을 주로 한다. 또한 이론적 배경이나 복잡한 수식으로 계산해야 하는 경우, 근사치를 계산하기 위해서도 몬테카를로를 많이 사용한다. 몬테카를로 시뮬레이션은 모나코의 유명한 도박 도시이름을 따서 만들었다고 한다...
지금까지 살펴본 확률분포는 모두 평균이나 분산과 같은 매개변수들을 기반으로 확률분포를 정하게 됩니다. 예를 들어, 정규분포(Normal Distribution)에서는 평균과 분산을 알고서 확률분포를 구하게 되죠.. 그런데 만약 평균과 분산과 같은 매개변수를 모를 경우, 확률 분포를 어떻게 알 수 있을까요? 특히 정규분포와 달리 여러개의 봉으로 이루어진 데이터라면, 기존의 방식으로 확률 분포를 알수는 없을 겁니다. 이렇게 매개변수가 없을 때, 확률 분포를 구하는 방법을 Nonparamtric Method라고 합니다. (보통 비모수적 방법이라고 이야기 하는 것 같습니다.) Nonparametric Method는 보통 Histogram, Kernel Density, Nearest Neighbour 세가지가 있..
확률분포위키피디아에 따르면 확률분포를 다음과 같이 정의하고 있습니다.확률분포(probability distribution)는 확률변수가 특정한 값을 가질 확률을 나타내는 함수를 의미한다. 주사위를 던질거나 슬롯머신을 할 때 나올 수 있는 모든 가능성의 확률을 모아놓은 집합이 확률분포라고 할 수 있습니다. 다음 그림을 보면 주사위 두개를 던졌을 때 나올 수 있는 두 주사위의 합을 확률분포로 나타내고 있네요. 그러면 이를 수식으로는 어떻게 표현할까요? 정의를 다시 보면 "확률변수가 특정한 값을 가질 확률..." 이라고 되어 있습니다. 확률변수는 일반적으로 X나 Y와 같이 대문자로 표기합니다. 그리고 변수가 가질 수 있는 특정한 값은 x나 y처럼 소문자로 나타내죠.. 변수 X가 특정한 값 x를 가질 확률을 위..