베이시안(Bayesian) 정리를 살펴보면 다음과 같은 식을 이야기 했었습니다. 여기서 Posterior 확률을 구하는 것이 문제인데요. 예를 들어, 만약 p(w)를 남편이 바람 필 확률이라고 해보죠. 그리고 p(D)가 셔츠에서 입술자국이 나올 확률이라고 가정해 보겠습니다. (예제가 좀 그런가요? ㅠㅠ) 이때 Posterior인 p(w|D)는 셔츠에서 입술자국이 나왔을 때 바람필 확률이라고 보면 됩니다. 즉, 만약 남편 셔츠를 봤는데 입술자국이 있으면 실제로 바람을 폈을 확률이 어떻게 될지를 예측할 수 있다는 것이죠. 만약 Bayesian으로 Posterior를 계산한다고 할 때, 각 항목이 일반적인 분포를 따르지 않는다고 하면 도출하는 방식이 매우 복잡해질 수 있다는 것입니다. 반대로 likelihoo..
앞에서 확률이론과 Bayesian & Frequentist에 대해서 살펴봤습니다. 기계학습의 목표는 이러한 이론들을 활용해서 주어진 입력값 x에 대한 타겟인 t를 예측하는 것이었습니다. 불확실성에 직면해서 결정을 내려지 않으면 안될 경우, 어떤 결정을 해야 하고, 어떤 정보를 이용해야 하는지에 대해서 다루는 것이 바로 의사결정이론 (Decision Theory)입니다. Decision Theory 병원에서 암을 진단하기 위해 X-ray 사진이 주어졌다고 생각해 봅시다. X-ray 사진을 보고 암에 걸렸는지 아닌지 결정해야 할때, Decision Theory를 활용할 수 있습니다. 암일 경우를 클래스 1(C1)이라고 하고, 암이 아닌 경우를 클래스 2(C2)라고 할 때, 주어진 X-ray 사진(x)이 특정..